Urban-PLUMBER

A multi-site model evaluation project for urban areas

Phase 2 Phase 1 Download project protocol
Mathew Lipson (UNSW), Sue Grimmond (Reading), Martin Best (Met Office),
with observational and modelling participants.

Amsterdam, The Netherlands (NL-Amsterdam)

Jump to section:

Observations (before additional gap filling)

./obs_plots/all_obs_qc.png

Site forcing metadata

  observation_attributes
title URBAN-PLUMBER forcing data for NL-Amsterdam
summary Observed and ERA5-derived surface meteorological data for Amsterdam, The Netherlands. Data is for use by registered participants of Urban-PLUMBER in this project only. Do not distribute. All times in UTC.
sitename NL-Amsterdam
long_sitename Amsterdam, The Netherlands
version v0.9
conventions ALMA+CF.rev13
featureType timeSeries
time_coverage_start 2009-01-01 00:00:00
time_coverage_end 2020-10-13 10:00:00
time_analysis_start 2019-01-01 00:00:00
time_shown_in UTC
local_utc_offset_hours 1.0
timestep_interval_seconds 1800.0
timestep_number_spinup 175296
timestep_number_analysis 31269
observations_contact Bert Heusinkveld (bert.heusinkveld@wur.nl) & Gert-Jan Steeneveld (gert-jan.steeneveld@wur.nl), Wageningen University
observations_reference Horst et al. (2021) in preparation
project_contact Mathew Lipson: m.lipson@unsw.edu.au, Sue Grimmond: c.s.grimmond@reading.ac.uk, Martin Best: martin.best@metoffice.gov.uk
date_created 2021-09-16 01:39:17
other_references ERA5: Copernicus Climate Change Service (C3S) (2017): https://cds.climate.copernicus.eu/cdsapp#!/home NCI Australia: http://doi.org/10.25914/5f48874388857
acknowledgements Contains modified Copernicus Climate Change Service Information (ERA5 hourly data on single levels). Data from replica hosted by NCI Australia. With thanks to all involved in collecting, processing and hosting observational data
comment Rainfall, air pressure and humidity observations from Schiphol Airport, with pressure corrected to tower height. Sensible and latent heat periods flagged 0 included. Given specific humidity results in RH>100, so using given RH (limited to 100) converted to Qair.
history v0.9 (2021-09-08): beta issue

Site images

   
Region Regional map. © OpenStreetMap site_map Site map with 500 m radius. © OpenStreetMap
site_photo Site photo. © B. Heusinkveld site_sat Site aerial photo with 500 m radius. © OpenStreetMap, Microsoft

Maps developed from: Hrisko, J. (2020). Geographic Visualizations in Python with Cartopy. Maker Portal.

Site characteristics

id parameter value units source doi
1 latitude 52.3665 degrees_north ven der Horst (in prep.) -
2 longitude 4.8929 degrees_east ven der Horst (in prep.) -
3 ground_height 0 m ven der Horst (in prep.) -
4 measurement_height_above_ground 40 m ven der Horst (in prep.) -
5 impervious_area_fraction 0.68 1 ven der Horst (in prep.) -
6 tree_area_fraction 0.15 1 ven der Horst (in prep.) -
7 grass_area_fraction 0 1 ven der Horst (in prep.) -
8 bare_soil_area_fraction 0 1 ven der Horst (in prep.) -
9 water_area_fraction 0.17 1 ven der Horst (in prep.) -
10 roof_area_fraction 0.44 1 ven der Horst (in prep.) -
11 road_area_fraction 0.07 1 ven der Horst (in prep.) -
12 other_paved_area_fraction 0.17 1 ven der Horst (in prep.) -
13 building_mean_height 14.2 m ven der Horst (in prep.) -
14 tree_mean_height 12 m estimate -
15 roughness_length_momentum 0.7425 m ven der Horst (in prep.) (morphometric) -
16 displacement_height 10.035 m ven der Horst (in prep.) (morphometric) -
17 canyon_height_width_ratio 0.92 1 estimated, see notes derived from 0.326 frontal area index reported in Horst (2021) and Eq. 7 & 8 in Porson et al. 2010
18 wall_to_plan_area_ratio 1.02 1 estimated, see notes derived from 0.326 frontal area index reported in Horst (2021) and Eq. 1 in Masson et al. 2020
19 average_albedo_at_midday 0.096 1 median of observations -
20 resident_population_density 14165 person/km2 Steeneveld, pers. comm. mean of neighbouring districts from Dutch national statistics office
21 anthropogenic_heat_flux_mean 43.4 W/m2 Varquez et al (2021) https://doi.org/10.1038/s41597-021-00850-w
22 topsoil_clay_fraction 0.19 1 OpenLandMap https://doi.org/10.5281/zenodo.2525663
23 topsoil_sand_fraction 0.6 1 OpenLandMap https://doi.org/10.5281/zenodo.2525662
24 topsoil_bulk_density 1380 kg/m3 OpenLandMap https://doi.org/10.5281/zenodo.2525665
25 building_height_standard_deviation 11.21 m estimated, see notes derived from morphology using eq. 2 of Kanda et al. (2013)
26 roughness_length_momentum_mac 0.77 m Macdonald method derived from morphology using eq. 26 of Macdonald et al. (1998)
27 displacement_height_mac 10.07 m Macdonald method derived from morphology using eq. 23 of Macdonald et al. (1998)
28 roughness_length_momentum_kanda 2.22 m Kanda method derived from morphology using eq. 12a of Kanda et al. (2013)
29 displacement_height_kanda 25.17 m Kanda method derived from morphology using eq. 10a of Kanda et al. (2013)

Site forcing

SWdown forcing

SWdown

LWdown forcing

LWdown

Tair forcing

Tair

Qair forcing

Qair

PSurf forcing

PSurf

Rainf forcing

Rainf

Snowf forcing

Snowf

Wind_N forcing

Wind_N

Wind_E forcing

Wind_E

Quality control (qc) and gap filling procedure

QC process on observations

  1. Out-of-range: removal of unphysical values (e.g. negative shortwave radiation) using the ALMA expected range protocol.
  2. Night: nocturnal shortwave radiation set to zero, excluding civil twilight (when the sun is 6° below the horizon).
  3. Constant: four or more timesteps with the same value (excluding zero values for shortwave radiation, rainfall and snowfall) are removed as suspicious.
  4. Outlier: remove values outside ±4 standard deviations for each hour in a rolling 30-day window (to account for diurnal and seasonal variations). Repeat with a larger tolerance (± 5 standard deviations) until no outliers remain. The outlier test is not applied to precipitation.
  5. Visual: remaining suspect readings are removed manually via visual inspection.

Gap-filling process

LWdown diurnal qc

./obs_plots/LWdown_obs_qc_diurnal.png

LWup diurnal qc

./obs_plots/LWup_obs_qc_diurnal.png

PSurf diurnal qc

./obs_plots/PSurf_obs_qc_diurnal.png

Qair diurnal qc

./obs_plots/Qair_obs_qc_diurnal.png

Qh diurnal qc

./obs_plots/Qh_obs_qc_diurnal.png

Qle diurnal qc

./obs_plots/Qle_obs_qc_diurnal.png

Qtau diurnal qc

./obs_plots/Qtau_obs_qc_diurnal.png

Rainf diurnal qc

./obs_plots/Rainf_obs_qc_diurnal.png

SWdown diurnal qc

./obs_plots/SWdown_obs_qc_diurnal.png

SWup diurnal qc

./obs_plots/SWup_obs_qc_diurnal.png

Snowf diurnal qc

./obs_plots/Snowf_obs_qc_diurnal.png

Tair diurnal qc

./obs_plots/Tair_obs_qc_diurnal.png

Wind_E diurnal qc

./obs_plots/Wind_E_obs_qc_diurnal.png

Wind_N diurnal qc

./obs_plots/Wind_N_obs_qc_diurnal.png

Bias correction diurnal comparison

Four methods drawing on ERA5 reanalysis are compared relative to the quality-controlled flux tower data. The methods are:

  1. ERA5: the nearest land based 0.25° resolution ERA5 grid (i.e. without bias correction)
  2. WFDE5: the nearest WFDE5 grid (which use 0.5° gridded monthly observations for bias correction)
  3. UP: the Urban-PLUMBER methods used in this collection (using site observations for bias correction)
  4. LN: linear methods based on FLUXNET2015 (using site observations for bias correction)

ERA5 bias correction

The UP methods are as follows:

Mean absolute error (MAE) is shown in the legend.

Tair diurnal bias correction

./era_correction/NL-Amsterdam_Tair_all_diurnal.png

Qair diurnal bias correction

./era_correction/NL-Amsterdam_Qair_all_diurnal.png

PSurf diurnal bias correction

./era_correction/NL-Amsterdam_PSurf_all_diurnal.png

LWdown diurnal bias correction

./era_correction/NL-Amsterdam_LWdown_all_diurnal.png

SWdown diurnal bias correction

./era_correction/NL-Amsterdam_SWdown_all_diurnal.png

Wind diurnal bias correction

./era_correction/NL-Amsterdam_Wind_all_diurnal.png

Rainf diurnal bias correction

./era_correction/NL-Amsterdam_Rainf_all_diurnal.png

Jump to section: